DrA, wrong tiebreak

Post Reply
clp
Posts: 209
Joined: Tue Jul 10, 2018 14:28
Real name: Kees Pippel
Location: IJmuiden

DrA, wrong tiebreak

Post by clp »

Tiebreak definition:
From: FMJD annexes, 5.11.1.2.1. For round robin tournaments (p31)
  • "the best results obtained in order of the classification"
There is something weird with this definition. Output is a desired sequence. But this is also the input.

We can rephrase the definition based on game points per same score group.
The same score groups are ranked from high to low, in this example: +2, +1, 0, -1, -2, -3.

The new order will be:
  • Better results grouped by the same score, in descending order

Example DraughtsArbiter Pro (v.5.44b1)
Why are players 1,2 and 3, 4 tied?
Pl Name |1 2 | 3 4 | 5  6 | ±  Pt  No O.(W)
1  H1   |X 1 | 1 2 | 2  1 | +2  7  7.05  ?????
1  H2   |1 X | 2 1 | 1  2 | +2  7  7.05

3  M1   |1 0 | X 1 | 2  1 | =0  5  5.07  ?????
3  M2   |0 1 | 1 X | 1  2 | =0  5  5.07

5  L1   |0 1 | 0 1 | X  2 | -1  4
6  L2   |1 0 | 1 0 | 0  X | -3  2

Calculation per same score group (±)
Pl Name | +2 |  =0 |-1 -3 | ±  Pt Key   TB
1  H1   |  1 |   3 | 2  1 | +2  7-1321   1
2  H2   |  1 |   3 | 1  2 | +2  7-1312   2

3  M1   |  1 |   1 | 2  1 | =0  5-1121   3
4  M2   |  1 |   1 | 1  2 | =0  5-1112   4

5  L1   |  1 |   1 | 0  2 | -1  4-1102   5
6  L2   |  1 |   1 | 0  0 | -3  2-1100   6

Example Direct Encounter
Sort Criteria for tie-break rules, point 5.
Better score between 2 (or more) players at the shared places

A, B, C are tied at places 2 to 4 with total score = 4.
Direct encounter score A = 3, B=1, C = 2.
Why are players B, C tied as shown below?
direct-encounter-p5.jpg
Main standings criteria
  • Total Score
  • Direct Encounter

Example World Championship 2025 - Final Yaoundé
Pl Naam                Rating  1 2|3 4|5 6 7 8 9|A B C  N ±   = - Pt 
1  Jan Groenendijk   GMI 2442  X 1 1 1 2 1 1 1 1 1 2 1 11 +2  9 0 13
2  Jitse Slump       GMI 2409  1 X 1 1 1 1 2 1 1 1 1 2 11 +2  9 0 13

3  Guntis Valneris   GMI 2404  1 1 X 1 1 1 1 1 1 2 1 1 11 +1 10 0 12
4  M. van IJzendoorn GMI 2384  1 1 1 X 1 1 1 1 1 2 1 1 11 +1 10 0 12

5  N`cho Joel Atse   GMI 2352  0 1 1 1|X 1 1 2 1|1 1 1 11 =0  9 1 11
6  Kees Thijssen     GMI 2337  1 1 1 1|1 X 1 1 1|0 1 2 11 =0  9 1 11
7  Wouter Sipma      GMI 2372  1 0 1 1|1 1 X 1 1|1 1 2 11 =0  9 1 11
8  Martin Dolfing    GMI 2344  1 1 1 1|0 1 1 X 1|1 2 1 11 =0  9 1 11
9  M.R. Lutete       GMI 2317  1 1 1 1|1 1 1 1 X|1 1 1 11 =0  9 0 11

10 Ron Heusdens      GMI 2258  1 1 0 0 1 2 1 1 1 X 1 1 11 -1  8 2 10
11 Emre Hageman       MI 2223  0 1 1 1 1 1 1 0 1 1 X 1 11 -2  9 2  9
12 Simon Harmsma      MI 2286  1 0 1 1 1 0 0 1 1 1 1 X 11 -3  8 3  8

Calculation per same score group (±)
Pl  Naam    Rating              +2  +1         0-1-2-3  N ±   = - Pt Key     TB
1  Jan Groenendijk   GMI 2442    1|  2|        6|1 2 1|11 +2  9 0 13-126121   1
2  Jitse Slump       GMI 2409    1|  2|        6|1 1 2|11 +2  9 0 13-126112   2

3  Guntis Valneris   GMI 2404    2|  1|        5|2 1 1|11 +1 10 0 12-215211   4
4  M. van IJzendoorn GMI 2384    2|  1|        5|2 1 1|11 +1 10 0 12-215211   4

5  N`cho Joel Atse   GMI 2352    1|  2|        5|1 1 1|11 =0  9 1 11-125111   8
6  Kees Thijssen     GMI 2337    2|  2|        4|0 1 2|11 =0  9 1 11-224012   6
7  Wouter Sipma      GMI 2372    1|  2|        4|1 1 2|11 =0  9 1 11-124112   9
8  Martin Dolfing    GMI 2344    2|  2|        312 1 1|11 =0  9 1 11-223211   7
9  M.R. Lutete       GMI 2317    2|  2|        4|1 1 1|11 =0 11 0 11-224111   5

10 Ron Heusdens      GMI 2258    2|  0|        5|X 1 1|11 -1  8 2 10-205011  10
11 Emre Hageman       MI 2223    1|  2|        4|1 0 1|11 -2  9 2  9-124101  11
12 Simon Harmsma      MI 2286    1|  2|        3|1 1 0|11 -3  8 3  8-123110  12
Post Reply